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Data Structure Spectrum
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MIL with Structured Bags

Bags contain sub-populations (clusters)
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Items contribute to bag labels only through cluster membership
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Structure = 
bag contents drawn from multiple distributions

What problems have this structure?



Predicting Crop Yield

• USDA: 

• Post-harvest yield results per county, per crop

• Could we predict yield earlier in the year?

• Data = remote sensing: weekly observations, entire U.S.

• Benefits:

• Inform agricultural markets 

• Enable more focused 
precision agriculture



Multiple Instance Problem

• Each county (bag of pixels): 

• 250 m/pixel = 30,000 - 300,000 pixels

• One label per crop: bushels/acre

• Which ones are relevant?

• Bags have structure

• Sub-pixel mixing: Need to model degree of membership

Cheyenne County, KS, Jun 27, 2001

37 bu/acre of wheat
124 bu/acre of corn



Instance = Time Series

• MODIS: Red and NIR every 8 days

• How early can we make good predictions?

• Time series can
reveal crop type

• Or at least crop
vs. forest/city/etc.

• Thus hinting at
relevance to label

NDVI = NIR - RED
NIR + RED



Multiple-Instance Learning

• Classification: >= 1 positive item -> positive bag [Dietterich et al., 97]

• MIL via Embedded Instance Selection (MILES) [Chen et al., 06]

• Embed bags in item-similarity feature space, 
use feature selection to find relevant ones, use regular SVM

• Application: region-based image categorization
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Multiple-Instance Regression

• Primary Instance Regression (PIR) [Ray & Page, 01]

• Find single item that dictates bag label

• Other items are noisy observations of primary
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Our Solution: Cluster Regression Models

• Explicitly model bag structure, multiple populations

• Assumption: bag label derives from 
a subset of similar items (in input feature space)

• Individual relevance per item

• Approach: 

1. Identify clusters of items

2. Build one regression model per cluster

3. Select model that best fits the bag labels



MIL with Structured Bags
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MIL with Structured Bags

Goal: infer cluster memberships to enable label prediction
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MIL with Structured Bags
Bag 1

Bag 2

Cluster 1

Target 1

Label 1

Cluster 1 Label 2

Cluster 2 Label 1

Cluster 2 Label 2

Target 2

Goal: infer cluster memberships to enable label prediction



MI-ClusterRegress

1. Cluster entire collection of data into k clusters

2. Create weighted exemplar for bag B, cluster c

3. Build k regression models

• Model Lc: map all bag exemplars wcB to bag labels

4. Select the regression model Lc’ that best fits the labels

Mixture 
model

f(xi) =

k∑

c=1

αcfc(xi)

ExemplarwcB =
1

|B|

|B|∑

i=1

p(c|xi)xi

Gaussianfc(x) = N (Mc, Σc)

Membership 
prob. p(c|xi) =

αcpc(xi|Mc, Σc)

p(xi)



MI-ClusterPredict

• Predicting the label of a new bag B’:

1. Classify items in B’ into the k clusters

2. Create an exemplar for the items in cluster c’

3. Use Lc’(wc’B’) to predict the bag’s label

wc′B′ =
1

|B′|

|B′|∑

i=1

p(c′|xi)xiExemplar

Membership 
prob. p(c|xi) =

αcpc(xi|Mc, Σc)

p(xi)



Crop Yield: Methods Evaluated

• MI-ClusterRegress Model Selection methods:

• Complexity: minimum # of support vectors

• Training: minimum error on training data

• Oracle: minimum error on test data

• Baselines

• B1: Exemplar = mean pixel (no structure)

• B2: Last year’s yield



Results: Train on ‘01-04, test ‘05

• CA: 42 counties, subsample 100 pixels/county

• Using K = 30 local models, select the best

• Same input data used to predict different crops

Harvest time Harvest time

Corn

140 160 180 200 220 240 260 280
0

5

10

15

20

25

30

35

Day prediction was made

R
e
la

ti
v
e
 e

rr
o
r

 

 

MSV

MTE

Oracle

B1: No structure

B2: Prev. yield

Wheat

20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

Day prediction was made

R
e

la
ti
v
e

 e
rr

o
r

 

 

MSV

MTE

Oracle

B1: No structure

B2: Prev. yield



Model Selection: Clusters Chosen
30 clusters
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Pixel Salience: Kings County, CA

Google Maps Wheat Salience, Day 72



Conclusions and Future Work
• MIR with structured data: challenging new problem

• MI-ClusterRegress:  Build per-cluster regression models 
that predict bag labels based on item relevance

• Crop yield prediction

• 5-10% relative error in predictions 4 months before harvest

• Bonus: item relevance provides per-crop maps

• Future work

• Larger per-county samples, more crops, more counties

• Other model selection heuristics

• Relax Gaussian assumption on internal bag structure
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